032 DIFFERENT SUBTYPES OF AGGRESSIVE B-CELL LYMPHOMAS SHARE AN EPIDEMIC SIGNATURE ENRICHED FOR POLYCOMB TARGETS IN STEM CELLS


1Department of Medical Genetics, Christian-Albrechts University, Kiel, Germany; 2Institute of Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany; 3LifeLine Inc, San Diego, United States; 4Institute of Functional Genomics, University of Regensburg, Regensburg, Germany; 5Institute of Pathology, Christian-Albrechts University, Kiel, Germany; 6Cancer Epigenetics Laboratory, Spanish National Cancer Centre, Madrid, Spain; 7Department of Hematology and Oncology, Georg-August University of Goettingen, Goettingen, Germany; 8Institute of Pathology, Charitee-Universitatsmedizin Berlin, Berlin, Germany

Introduction: Although gene inactivation by DNA methylation is well-known in lymphomas, its association with different lymphoma subtypes defined by morphological, genetic and transcriptional features is currently unknown.

Material and methods: Microarray-based DNA methylation analyses of 802 cancer-related genes were performed in 83 aggressive B cell lymphomas characterized by transcriptional and genetic profiling, 7 B cell lymphoma cell lines and 10 non-malignant hematopoietic tissues. Immunohistochemistry for INMNT and MBD proteins was performed in selected cases.

Results: DNA methylation profiles were not strictly associated with any morphological, genetic or transcriptional features. By supervised analyses, we identified genes de novo methylated in all lymphoma subtypes (n=56) or in a subtype-specific manner (n=22). Genes de novo methylated across different lymphoma subtypes were highly enriched for targets of the polycomb repressor complex in stem cells (OR=8.2) and for biological processes deregulated in different cancers. Furthermore, these genes were expressed at low levels in normal hematopoietic tissues. Initial expression analyses suggest differences in INMNT and MBD levels between lymphoma entities.

Conclusions: These findings, especially the high enrichment for polycomb targets in stem cells, suggest that different aggressive B cell lymphomas might derive from precursor cells with stem cell-like features.

034 GENE EXPRESSION SIGNATURES PREDICT SURVIVAL IN DIFFUSE LARGE B-CELL LYMPHOMA FOLLOWING RITUXIMAB AND CHOP-LIKE CHEMOTHERAPY


1Institute of Human Genetics, Christian-Albrechts University, Kiel, Germany; 2Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany; 3Memorial Sloan-Kettering Cancer Center, New York, United States; 4Illumina Inc, San Diego, United States; 5Institute of Pathology, Christian-Albrechts University, Kiel, Germany; 6Icahn School of Medicine at Mount Sinai, New York, United States

Introduction: Gene expression profiling (GEP) has been used to distinguish germinal center B cell-like (GCB) and activated B cell-like (ABC) DLBCL. Prognostic gene expression signatures include the lymph node, germinal center, and proliferation signature. R-CHOP has significantly improved outcome of DLBCL patients. Conflicting reports of immunohistochemistry based studies, if gene expression signatures include the lymph node, germinal center, and proliferation signatures have been published. To investigate, if gene expression signatures remain predictive following R-CHOP, we performed GEP on 176 DLBCL biopsies using Affymetrix U133 arrays.

Methods: Samples were classified as GCB or ABC DLBCL and assessed for expression of molecular signatures. A Cos-proportional hazards model was used to determine the association of gene expression features with PFS/OS.

Results: 78 samples were classified as GCB DLBCL, 76 as ABC DLBCL, and 22 were unclassified. R-CHOP improved OS for both GCB and ABC DLBCL compared to standard chemotherapy. p16 was a more favorable PFS and OS than ABC DLBCL (5-year PFS 72% vs. 43%; log-rank p<0.0001; 5-year OS 80% vs. 56%; p=0.04). The lymph node and germinal center signatures were associated with favorable PFS/OS and the proliferation signature with inferior PFS/OS.

Conclusions: In summary, the prognostic value of the lymph node, germinal center and proliferation signatures was maintained in the context of R-CHOP. An understanding of the biological attributes of DLBCL tumors reflected in these signatures is critical to improve OS of these patients.

035 GENE EXPRESSION PROFILING OF PERIPHERAL T-CELL LYMPHOMA INCLUDING GAMMA/Delta T-CELL LYMPHOMA

K. Miyazaki1, M. Yamaguchi1, H. Inoue2, T. Kobayashi1, S. Tamura1, K. Nishii1, N. Kikuyama1

1Department of Hematology and Oncology, Mie University, Tsu, Japan; 2Department of Pathologic Oncology, Mie University, Tsu, Japan

Background: Gamma/delta T-cell lymphomas are divided into alpha/beta or gamma/delta, and are usually classified into peripheral T-cell lymphoma (PTCL) or gamma/delta T-cell lymphoma. These tumors include a variety of lymphomas and present with unique clinicopathologic features. Several studies have elucidated the gene expression profile of PTCLs; however, GAMMA/Delta has not been included in previous studies.

Materials and Methods: To clarify the difference between alpha/beta (PTCL) and gamma/delta (GDTL) T-cell lymphoma in the gene expression profile, we performed the analysis in the 32 PTCL cases and 3 GDTL cases.

Results: The 28 PTCL cases were classified as alpha/beta (19), gamma/delta (8) PTCL, and 3 cases were unclassified. The gammas/delta PTCL cases were subdivided into 3 subtypes: 1 intestinal GDTL, 1 cutaneous GDTL, and 1 thyroidal GDTL. The gamma/delta PTCL cases were subdivided into 3 subtypes: 1 hepatosplenic GDTL, 1 intestinal GDTL, and 1 cutaneous GDTL. In the supervised analysis, we could successfully distinguish the alpha/beta and gamma/delta PTCLs. The alpha/beta PTCL subgroup was highly enriched for polycomb targets in stem cells (OR=8.2), and for biological processes deregulated in different cancers. Furthermore, these genes were expressed at low levels in normal hematopoietic tissues. Initial expression analyses suggest differences in INMNT and MBD levels between lymphoma entities.

Conclusions: These findings, especially the high enrichment for polycomb targets in stem cells, suggest that different aggressive B cell lymphomas might derive from precursor cells with stem cell-like features.

036 ARRAY-CGH MAPPING OF AN OVERREPRESENTED 7Q REGION IN 1/6 HEPATOSPLENIC T-CELL LYMPHOMA

I. Wlodarczak1, H. Urbankova1, P. Van Loo2, S. Shetty3, B. Roland4, L. Krenacs5, P. De Prenehu3, J. Blazek6, M. Jarosova5, P. Vandenbergh1, C. De Wolf-Peeters1

1Dept of Human Genetics, Catholic University of Leuven, Leuven, Belgium; 2Dept of Human Genetics; Flanders Interuniversity Inst. for Biotechnology, Dept. of Electrical Engineering, Catholic University of Leuven, Leuven, Belgium; 3Dept of Medical Genetics, Medical University of Calgary, Calgary, Canada; 4Dept of Medical Genetics, University of Calgary, Calgary, Canada, 5Inst of Biotechnology, Bay-Zoltan Foundation for Applied Research, Szeged, Hungary; 6Dept of Pathology, AZ St Jan AV, Brugge, Belgium, 7Dept of Histopathology-Oncology, Palacky University, Olomouc, Czech Republic; 8Dept of Pathology, Catholic University of Leuven, Leuven, Belgium

Hepatosplenic T-cell lymphoma (HSTCL) is a rare, aggressive disease associated with a poor prognosis. Cytogenetically, this lymphoma is hallmarked by isochromosome 7q ([i(7)(q10)]) resulting in monosomy 7p and trisomy 7q. Molecular significance of this aberration remains largely unknown. Recently, we identified 3 cases of HSTCL with a ring chromosome 7 ([r(7)]) harbouring 3-5 additional copies of 7q11.3, as shown by FISH. To map the overrepresented 7q region and define the smallest commonly gained region (SCGR), we performed high resolution chromosome 7 array-CGH studies of 3 cases with [r(7)], 2 cases with [i(7)(q10)] and 1 case with [i(7)(q10)] and add(7)(q32). The analysis of the first 2 cases showed the entire 1.8 Mb of 7q and y as expected. The third case revealed loss of 7p and a duplication of 7q11.1. All 4 cases with [r(7)] exhibited a partial deletion of the telomeric region of 7p, duplication of 7q11.3 and an additional gain of the 7q11.3p13 region. The size of the latter region and amplification level of the targeted sequences differed from case to case. The mapped SCGR covered approximately 24 Mb at 7q11.1. FISH with the selected BACs showed presence of 3-8 additional signals in cases with [r(7)]. In summary, high

© The Author 2008. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oxfordjournals.org
MOLECULAR SIGNATURES FOR NASAL NK-/T-CELL LYMPHOMAS AND HEPatosPLeNIC T-CELL LYMPHOMAS

Y. Huang1, A. de Reynies2, L. de Leval3, D. Rickman2, C. Gisselbrecht4, J. Bosq5, A. Lavergne5, E. Macintyre5, N. Brousse5, J. Marquet1, C. Schmitt1, F. Berger5, P. Gaulard1

1Biostatistics, Ligue Nationale contre le Cancer, Paris, France, 2Biostatistics, Ligue Nationale contre le Cancer, Paris, France, 3Pathology, CHU Sart-Tilman, Liege, Belgium, 4Hematology, GELA, Paris, France, 5Pathology, CHU Sart-Tilman, Liege, Belgium

Background: Nasal NK-/T-cell lymphomas (NK/T), hepatosplenic T-cell lymphomas (HSTL) and enteropathy-type T-cell lymphomas (ETL) are separate extranodal entities sharing a derivation from cytotoxic T or NK cell subsets. Their genetic alterations and molecular signatures are currently unknown.

Material and methods: With the aim to identify the molecular signature of each entity, RNAs of 22 tumor samples (NK/T: 7; HSTL: 9 including 3 sorted tumor cell suspensions; ETL: 6) and 2 NK/T tumor-derived cell lines were hybridized on Affymetrix HG-U133A Plus2.0 microarray, together with RNAs from normal NK and gammahdelta T cells and from 16 cases of peripheral T-cell lymphoma unspecified (PTCL-U).

Results: Unsupervised analysis revealed 3 distinct clusters representative of each entity, in accordance with the pathological diagnoses. The molecular signature of each entity was defined by comparison to PTCL-U. NK/T was characterized by overexpression of genes encoding NK cell receptors (CD56, CD244, KIRs), cytotoxic molecules (Granzymes B, H, perforin), chemokines (CCL5, CCL4) and apoptosis-associated molecules such as Fas ligand. Apoptosis and Jak/Stat pathways were among the most differentially expressed pathways and phosphorylated Stat3 (Tyr705) was constitutively expressed in NK/T by immunohistochemistry. On the other hand, HSTL had overexpression of genes encoding cell to cell interaction molecules (integrins, VCAM1), NK cell receptors (KIRs), chemokines and PDGFR alpha. As expected, genes encoding cytotoxic functions were underexpressed in HSTL VEGF, MAPK, Wnt signalling pathways were among the most overrepresented pathways in HSTL.

Conclusion: The current study (1) confirms that the molecular signature of each entity correlates with current WHO classification, (2) verifies the cell origins of NK/T (activated cytotoxic NK cells) and HSTL (non-activated cytotoxic T cells), and (3) suggests distinct signalling pathways implicated in the pathogenesis of these cytotoxic lymphomas.

GENE EXPRESSION PROFILING REVEALS DISTINCT MOLECULAR SIGNATURES FOR NASAL NK-/T-CELL LYMPHOMAS AND HEPatosPLeNIC T-CELL LYMPHOMAS

MOLECULAR SIGNATURES FOR NASAL NK-/T-CELL LYMPHOMAS AND HEPatosPLeNIC T-CELL LYMPHOMAS

Background: Nasal NK-/T-cell lymphomas (NK/T), hepatosplenic T-cell lymphomas (HSTL) and enteropathy-type T-cell lymphomas (ETL) are separate extranodal entities sharing a derivation from cytotoxic T or NK cell subsets. Their genetic alterations and molecular signatures are currently unknown.

Material and methods: With the aim to identify the molecular signature of each entity, RNAs of 22 tumor samples (NK/T: 7; HSTL: 9 including 3 sorted tumor cell suspensions; ETL: 6) and 2 NK/T tumor-derived cell lines were hybridized on Affymetrix HG-U133A Plus2.0 microarray, together with RNAs from normal NK and gammahdelta T cells and from 16 cases of peripheral T-cell lymphoma unspecified (PTCL-U).

Results: Unsupervised analysis revealed 3 distinct clusters representative of each entity, in accordance with the pathological diagnoses. The molecular signature of each entity was defined by comparison to PTCL-U. NK/T was characterized by overexpression of genes encoding NK cell receptors (CD56, CD244, KIRs), cytotoxic molecules (Granzymes B, H, perforin), chemokines (CCL5, CCL4) and apoptosis-associated molecules such as Fas ligand. Apoptosis and Jak/Stat pathways were among the most differentially expressed pathways and phosphorylated Stat3 (Tyr705) was constitutively expressed in NK/T by immunohistochemistry. On the other hand, HSTL had overexpression of genes encoding cell to cell interaction molecules (integrins, VCAM1), NK cell receptors (KIRs), chemokines and PDGFR alpha. As expected, genes encoding cytotoxic functions were underexpressed in HSTL VEGF, MAPK, Wnt signalling pathways were among the most overrepresented pathways in HSTL.

Conclusion: The current study (1) confirms that the molecular signature of each entity correlates with current WHO classification, (2) verifies the cell origins of NK/T (activated cytotoxic NK cells) and HSTL (non-activated cytotoxic T cells), and (3) suggests distinct signalling pathways implicated in the pathogenesis of these cytotoxic lymphomas.

GENOME-WIDE PROFILING OF FOLLICULAR LYMPHOMA (FL) BY ARRAY COMPARATIVE GENOMIC HYBRIDIZATION (ACGH) REVEALS PROGNOSTICALLY SIGNIFICANT DNA COPY NUMBER IMBALANCES

K. Cheung1, S.P. Shah1, C. Steidl1, N. Johnson1, T. Rellander1, A. Telenius1, B. Lar1, P.T. Gnar1, K. Murphy1, W. Lam1, M. Mama1, J.M. Connors1, R. Ng1, P.D. Gascoyne1, D.E. Hornsman1

1Center for Lymphoid Cancers, British Columbia Cancer Agency, Vancouver, Canada

Background: The initial genetic event in ~85% of FL is the t(14;18)(q32;q21) translocation resulting in over-expression of the anti-apoptotic protein BCL-2. The secondary events associated with disease progression however are not well defined. To this end, we have generated a genome-wide profile of regional imbalances and identified significant prognostic correlates in relation to both overall survival (OS) and transformation risk (TR).

Materials and Methods: High resolution whole genome BAC aCGH was applied to 107 diagnostic FL specimens to characterize the recurrent regions of copy number change. An analytical approach that defined regions of copy number change as intersections between visual analysis and a Hidden Markov model-based computational approach was utilized to reduce false positive annotations.

Results: 68 distinct regional alterations recurrent in ≥10% of cases were found. These regions ranged in size from 200 kb to 44 Mb affecting chromosomes 1, 2, 5, 6, 7, 8, 10, 12, 17, 18, 19, and 22. Validation of this global profile was undertaken in an independent cohort of 37 FL cases. Cluster analysis showed that 44% of the 107 cases could be classified into subgroups determined by the presence of +1q, +6p/6q, +7 or +18, providing support to a previous description of 4 secondary genetic pathways in FL development based on karyotype data. Survival analysis showed that 13 of the 68 regions correlated significantly with inferior OS (p<0.05). Of these 13 regions, 8 were identified to be significant independent predictors of OS using a multivariate Cox model that included the International Prognostic Index score. Two of these 8 regions (1p36.22-p36.33 and 6q21-24.3) were also predictors of TR and were validated by FISH.

Conclusions: Our study provides 1) a comprehensive copy number profile of 107 diagnostic FL cases by aCGH, 2) further insight into distinct genetic pathways related to FL development by cluster analysis, and 3) evidence of significant prognostic predictors that may ultimately be utilized for identifying high-risk patients as candidates for targeted risk-adapted therapies.