Session 9: pediatric lymphoma

088 WITH THE LMB AND BFM PROTOCOLS, CHILDREN AND ADOLESCENTS WITH B-CELL NON HODGKIN'S LYMPHOMA AND MATURE B-CELL LEUKEMIA HAVE SIMILAR SURVIVAL

C. Patte1, M. Zimmerman2, A. Auperin1, A. Reiter2
1SFCE LMB Group Centre, Institut Gustave Roussy, Villejuif, France, 2University Giessen, NHL-BFM Study Center, Giessen, Germany

Purpose: Data of the 2 more recent French LMB and German-Austrian-Switzerland-Czech NHL-BFM studies were pooled to analyze and compare their results in 3 risk groups (A, B, C) depending on resistance, stage and CNS involvement, and receive 2, 4/5 or 8 courses of chemotherapy. In BFM, patients are stratified in 4 groups (R1, R2, R3, R4) adding HD LMI in the stratification and receive 2, 4, 5 or 6 courses. Although treatment schemes and drug dosages are different in the 2 regimens, drugs are the same: high dose methotrexate, corticosteroid, vincristine, cyclophosphamide (+/-ifosfamide), ara-C (HD in advanced stages (at)), doxorubicin, and +/VP16.

Method: Data of the BFM 95 (Blood 2005), the ongoing 64 studies, the SFCE part of the FABLM B96 (2007, RJH 2008) and the ongoing LMB 2001/03 studies were merged.

Results: There were 935 patients in the BFM (04/96-12/05) and 691 patients in the LMB (07/96-12/05) studies, and a total of 42 PMLBL. For the non PMLBL results are given for BFM and LMB in this order. 4y EFS was 88% (n=914) and 90% (n=670) respectively. By st, 4y EFS was 97% (n=96) and 98% (n=58) for st1, 98% (n=258) and 96% (n=144) for st2, 88% (n=373) and 92% (n=285) for st3, 76% (n=71) and 85% (n=87) for st4, 81% (n=146) and 81% (n=126) for B-AL, 72% and 79% for the CNS+. For the higher risk patients, defined as st with high LMI level (<500 inBFM or >twice the upper normal value in LMB), st4 or B-AL, 4y EFS was 83% (n=406) and 85% (n=366). All results were NS.

Conclusion: These 2 regimens developed in parallel since 1981 using same drugs obtain similar results. This encourages an international collaboration, especially addressing the question of rituximab in high risk patients.

089 IN CHILDHOOD B-CELL NON HODGKIN'S LYMPHOMA (B-NHL) AND MATURE B-CELL ACUTE LEUKEMIA (B-AL) WITH CNS DISEASE AT DIAGNOSIS, PATIENTS WITH BLASTS IN CSF ARE AT HIGHER RISK OF EVENT

V. Minard-Colin1, A. Auperin2, G. Leverger3, C. Schmitt1, N. Alacidj2, J. Michon6, C. Patte1
1Pediatric Oncology, Gustave Roussy Institut, Villejuif, France, 2Biostatistic, Gustave Roussy Institut, Villejuif, France, 3Pediatric Oncology, Hopital Armand Trousseau, Paris, France, 4Onco-hematology, Hopital d'Enfants, Vandoeuvre Les Nancy, France, 5Onco-hematology, Hopital d'Enfants, Bordeaux, France, 6Pediatric Oncology, Institut Curie, Paris, France

CNS involvement (CNS+) is known to be a factor of bad prognosis in B-NHL and B-AL. To investigate who are higher risk pts, data of the French CNS+ pts registered in LMB89, FABLM96 and on going LMB2001 studies were analysed. CNS+ was defined by: any non doubltful blasts in CSF (CSF+), cranial nerve palsy, intracerebral mass or parameningeal extension, and intraspinal mass with cord compression symptoms. CNS+ pts were treated in group C regimen after a prephase, pts received 2 COPADM including HDMTX 8g/m2, 2 CYVE chemotherapy. Subpilot patients received R (4 doses) on days -2 and 0 of COPADM1 and day 0 of CYM 1+2. Pilot patients also received R on days -2 and 0 of COPADM1 (6 doses). In a subset of patients, serum R levels were measured by ELISA using a polyclonal goat anti-R antibody conjugated to horseradish peroxidase (detection limit 0.5ig/ml). 1h prior (peak) and 30-60min after (troph) each R dose in COPADM1+2 as well as 1, 3, 6 and 9 mo after the last R dose for estimating t½.

Results: Forty-eight patients received 274 R infusions. No SAE attributed to R occurred and no HACA were detected. PK samples were obtained for 22 patients. Serum R levels were as reported in Table 1. Serum R levels obtained 1h prior and 30-60min after each R dose during COPADM1+2 as well as 1, 3, 6 and 9 months following the last R dose.

090 SAFETY AND PHARMACOKINETICS (PK) OF RITUXIMAB (R) IN COMBINATION WITH FAB CHEMOTHERAPY IN CHILDREN AND ADOLESCENTS (C+A) WITH STAGE III/IV MATURE B-NHL: A CHILDREN'S ONCOLOGY GROUP REPORT

M. J. Barth1, S. Goldman2, J. Zhil3, L. Smith3, S. L. Perkins4, B. Shirmaziji5, T. Gross6, W. Sanger6, M. S. Cairo9
1Department of Pediatrics, Roswell Park Cancer Institute, Buffalo, NY, United States, 2Department of Pediatric Hematology/Oncology, Medical City Children’s Hospital, Dallas, TX, United States, 3Department of Clinical Pharmacology, Hoffmann-La Roche, Inc., Nutley, NJ, United States, 4Department of Biostatistics, University of Nebraska, Omaha, NE, United States, 5Department of Pathology, University of Utah, Salt Lake City, UT, United States, 6Department of Pediatric Hematology/Oncology, University of Hawaii, Honolulu, HI, United States, 7Department of Pediatric Hematology/Oncology/Blood and Marrow Transplantation, Ohio State University, Columbus, OH, United States, 8Department of Cytogenetics, University of Nebraska, Omaha, NE, United States, 9Depts of Pediatrics, Medicine, Pathology and Cell Biology, Columbia University, New York, NY, United States

Introduction/Background: The FAB/LMB96 trial demonstrated the safe reduction of chemotherapy intensity in C+A with intermediate risk Stage III/IV B-NHL (2 yr EFS 84%) (Patte/Cairo et al, Blood, 2007). R has significantly improved EFS and OS in adults with DLBCL (Coiffier et al, NEJM, 2002). Dose dense R dosing has shown to result in sustained levels of R (Zwick et al, Semin Hematol, 2010) while demonstrating effective responses when compared to R dosed every 7 days. Habermann et al, J Clin Oncol, 2006). A recent murine model demonstrated an inverse relationship between tumor burden and R concentration (Davidey et al, Blood, 2009) suggesting pediatric B-NHL patients, who frequently present with high tumor burden, may benefit from a dose dense approach. The study objective was to determine PK and safety following addition of R to FAB B4 chemotherapy in a dose dense manner in C+A with Stage III/IV mature B-NHL.

Material/Methods: R (375mg/m2), generously supplied by Genentech, was administered to patients with Stage III/IV mature B-NHL receiving FAB B4 chemotherapy. Subpilot patients received R (4 doses) on days -2 and 0 of COPADM2 and day 0 of CYM 1+2. Pilot patients also received R on days -2 and 0 of COPADM1 (6 doses). In a subset of patients, serum R levels were measured by ELISA using a polyclonal goat anti-R antibody conjugated to horseradish peroxidase (detection limit 0.5ig/ml). 1h prior (peak) and 30-60min after (troph) each R dose in COPADM1+2 as well as 1, 3, 6 and 9 mo after the last R dose for estimating t½.

Results: Forty-eight patients received 274 R infusions. No SAE attributed to R occurred and no HACA were detected. PK samples were obtained for 22 patients. Serum R levels were as reported in Table 1. Serum R levels obtained 1h prior and 30-60min after each R dose during COPADM1+2 as well as 1, 3, 6 and 9 months following the last R dose.

The 1% of R was 29±7 days. Younger children (age <13y) demonstrated higher peak values but similar trough levels and a shorter t½. Conclusion: R can be safely added to FAB B4 chemotherapy with R peak/trough levels and t½ similar to those seen in adults. A dose dense approach can be safely utilized to achieve high R peak levels with sustained troughs despite high tumor burden. Our results also suggest younger children tend to achieve higher R peaks with a higher rate of clearance supporting the continued use of BSA based R dosing in pediatrics.
091 ANALYSIS OF TREATMENT FAILURE IN PATIENTS TREATED FOR NHL-B / B-ALL IN POLISH PEDIATRIC LEUKEMIA/LYMPHOMA STUDY GROUP

E. Latos-Grażyńska1, B. Kazańcowska2, G. Wrobel3, D. Kulej4, A. Chybicka1
1Dept. of Pediatric BMT, Hematology and Oncology, Medical University, Wrocław, Poland

Since B-NHL BFM 04 protocol was introduced in PPLLSG in 2004, lower EFS and OS results are obtained (NHL-B + B-ALL: OS=84,5±3,9%, EFS=79,3±4,1%; NHL-B: OS=89,9±3,8%, EFS=85,9±4,0%; B-ALL: OS=53,6±12,3% EFS=40,2±21,4%, comparing to results reported by BFM (NHL-B > B-ALL: EFS=0,89%; NHL-B: EFS=0,81% and LMB (NHL-B > B-ALL: EFS=0,90%; B-ALL: EFS=0,81%). Since 2004, 131 pts were enrolled in the protocol, including 78 with Burkitt lymphoma (60%), 19 with DLBCL (15%), 2 with PMLBL (1%), 20 with B-ALL (15%) and 12 with others (9%). The predominant primary site of the disease was abdomen - 51 (39 %) pts. 73% of patients presented with localized disease: at 1 (5 %), st II - 29 (22%), st III - 61 (47%) and 27% with disseminated disease: st IV – 19 (14%) and B-ALL – 17 (13%). CNS involvement was diagnosed in 9 (7 %) cases. Pre-treatment high LDH level was found in 57 (43%) cases. Pts were stratified in the following treatment groups: R1 – 2 (1%), R2 - 48 (37%), R3 – 26 (20), R4 – 55 (42%).

CR was achieved in 103 patients (79%), 12 (60%) patients with B-ALL and 91 (82%) with NHL-B. Six patients (6%) relapsed - four with B-ALL, one with Burkitt lymphoma and one with PMLBL. There were four isolated relapses (two CNS, one mediastinal, one testicular) and two with bone marrow involvement. In three cases of isolated relapses remission was achieved. Patients remain in RC (3, 2 y and 6 months respectively).

There were 15 deaths reported (11%) - seven in the NHL-B group and eight in B-ALL group. The main cause of death was lack of response to treatment (6 pts/4,2%); the other causes were the following: infectious complications (3 pts/3%), relapses (3 pts/3%), iatrogenic complications (venous thrombosis and pulmonary embolism post central catheterisation) (1 pt/1%), late complications after completion of therapy (1 pt/1%).

It seems that the main cause of treatment failure is a high number of patients not responding to chemotherapy. This group consists mostly of patients diagnosed with B-ALL and primary large tumor mass. It appears advisable to distinguish these patients as very high risk group, determine new prognostic factors for this group and establish more aggressive treatment.

092 EXCELLENT OUTCOME IN AGGRESSIVE NON HUDGGINK'S LYMPHOMA IN ADOLESCENTS AND YOUNG ADULTS TREATED WITH CHOP-BASED REGIMENS IN DSHNHL TRIALS: AGE IS NOT A RISK FACTOR IN PATIENTS BELOW 50 YEARS

L. H. Trümpy1, S. Zeylanova1, M. Ziepert1, B. Glass1, M. Loefler2, N. Schmitz3, M. Pfreundschuh4
1Hematology and Oncology, University Medicine Göttingen, Göttingen, Germany, 2Hosef, University of Leipzig, Leipzig, Germany, 3Hematology and Stem cell transplantation, Asklepios Hospital St Georg, Hamburg, Germany, 4Hematology and Oncology, University of Saarland, Homburg, Germany

Background: The IPI predicts outcome in aggressive lymphoma (aNHL); age > 60 yrs is a strong prognostic factor. It is not known if the age-dependent risk for OS (overall survival) and EFS (event free survival) increases in pts aged between 18 and 60 yrs. Adolescents pts are frequently treated with paediatric-type protocols, inducing a supposedly better outcome. However, biological differences such as the different proportion of non-MLL vs MLL (molecular Burkitt index) pts and genetic aberrations in different age groups (Klampfer et al, 2004) may also account for these differences. In order to gain more insight into the age difference of outcome in young aNHL patients (pts), data from prospective trials of the DSHNHL were analyzed with a focus on age-dependent outcome.

Materials/Results: Patient data (age 18-60, n=2151) were retrieved from the following published DSHNHL trials: NHL-B1 (n=710, <60, LDH normal), MINT (n=821, IPI 0/1, LDH elevated). 524 pts were < 35 yrs old. OS and EFS were calculated in pts aged 18-60 yrs, the risk for EFS increases monotonously at 55 yrs.

Conclusions: Outcome in low-risk pts < 50 yrs is excellent with CHOP based protocols, with approx 90% OS 0 40 mths, and there is no difference in outcome between pts aged 18-21, 21-25, 26-30 and 31-35 yrs. Also, the outcome in elderly pts aged >60 yrs is excellent with CHOP-based protocols, similar to adolescents pts treated with paediatric protocols, e.g. in mediastinal lymphoma. Age dependent risk increases around 50 yrs of age. A matched pair analysis w/ paediatric-type treated pts, including biological risk factors as well as molecular data is warranted.

093 ALK TYROSINE KINASE INHIBITORS FOR THE TREATMENT OF NHL

S. W. Morris
Departments of Pathology and Oncology, St. Jude Children’s Research Hospital, Memphis, TN, United States

More than 15 different anaplastic lymphoma kinase (ALK) fusions (e.g., CLTC-ALK, multiple EML4-ALK variants, KIF5B-ALK, NPM-ALK, RanBP2-ALK, SEC14L1-ALK, TGK-ALK, TPM4-ALK, and others) are now known to cause subsets of various malignancies including NHL (anaplastic large-cell lymphoma [ALK+ ALCL], diffuse large B-cell lymphoma [ALK+ DLBCL]), inflammatory myofibroblastic tumor (IMT), lymphoepithelioid tumors, and non-small cell lung cancer (NSCLC). In addition, preliminary studies suggest that subsets of several other cancers may also express oncogenic ALK fusions that drive their development (e.g., breast, colorectal and esophageal cancers). Furthermore, point mutations that constitutively activate ALK have been identified as driver mutations in the pediatric malignancy neuroblastoma. Given the large variety of cancers caused by ALK deregulation, a number of pharmaceutical and biotech companies have ALK small-molecule inhibitors in development. Patients with ALK-driven cancers such as NSCLC and IMT treated with the ALK inhibitor PD-03241066 (crizotinib, Pfizer), which is currently in registration trials, have had marked antitumor responses including occasional complete remissions, indicating that these tumors are truly driven by ALK. The preclinical ALK+ lymphoma models have demonstrated exquisite antitumor sensitivity to small-molecule inhibitors of the kinase, including certain drugs of even systemic lymphomatous involvement with ALK inhibitor therapy. To date, only a handful of ALK+ NHL patients have been treated with crizotinib but the responses reported have been quite marked. Especially given that these are patients with lymphomas that have failed conventional chemotherapies. Trials of crizotinib have recently begun recruitment of ALK+ NHL patients. Thus, the efficacy of this ALK inhibitor in a controlled experimental clinical setting will soon be determined. The availability of crizotinib – and other ALK small-molecule inhibitors that are entering the clinic as well – promises to revolutionize the treatment of ALK+ NHL. However, considerable work will be required to determine the most beneficial role for such therapy including its timing, the preferred combination(s) of ALK inhibitors, and the optimal strategies to combat the emergence of inhibitor resistance. Dr. Morris will present background regarding ALK and its pathogenic role in human cancers, an update on the current status of ALK inhibitor development, and will speculate as to the ultimate role for these inhibitors in the therapy of patients with ALK+ lymphomas.

094 ANTI-ALK ANTIBODIES IN CHILDREN WITH LYMPHOMA WITH VARIANT ALK TRANSLocations

C. Damm-Weik1, I. Oschlies2, W. Klapper3, S. Gesik3, K. Ait-Tahar4, R. Siebert1, A. Hellriegel5, K. Pütter6, W. Wessendorf1
1Department of Pediatric Hematology and Oncology, NHL-BFM Study Center, Giessen, Germany, 2Department of Pathology and Lymph Node Registry, Christian-Albrecht-University, Kiel, Germany, 3Institute of Human Genetics, Christian-Albrecht-University, Kiel, Germany, 4Nuffield Department of Clinical Laboratory Sciences, University of Oxford, Oxford, United Kingdom

Introduction/Background: Autoantibodies responses to the anaplastic lymphoma kinase (ALK) oncoantigen have been described in patients with neuropsychosis (NPM)-ALK positive anaplastic large cell lymphomas (ALCL). These antibody titres could be correlated with the risk of relapse (Ait-Tahar et al, Blood 2010). We now asked whether the presence of circulating ALK-specific antibodies was limited to patients with NPM-ALK positive ALCL or could also be detected in those patients with ALK-positive ALC or diffuse large B-cell lymphomas (DLBCL) patients whose tumours expressed variant ALK fusion partners.

Material and methods: 77 tumours from patients with the reference diagnosis of ALK-positive ALC and 2 ALK-positive DLBCL were screened for the presence of NPM-ALK fusion by a NPM-ALK-specific RT-PCR technique or by fluorescence in situ hybridisation. Eleven patients lacked a detectable NPM-ALK fusion. Immunohistochemically, all displayed a characteristic cytoplasmically restricted ALK-staining pattern. The presence and magnitude of ALK-specific antibodies in different ALK fusion groups (Klampfer 2004) may also account for these differences. The following variant ALK fusion partners: 9 ALCL with 2 ATIC-ALK, 1 MYH9-ALK, 12 ALCL with 3 TPM3-ALK, 3 variant ALK-partners not further classified; 2 plasmoblastic DLBCL with 3 variant ALK fusion partners, 1 ALCL with 3 variant ALK fusion partners.

Results: The tumour cells of the 11 ALK-positive lymphoma-patients expressed the following variant ALK fusion partners: 9 ALCL with 2 ATIC-ALK, 1 MYH9-ALK, 3 TPM3-ALK, 3 variant ALK-partners not further classified; 2 plasmoblastic DLBCL with 3 variant ALK fusion partners. The ALK-specific antibodies were detected in 1 of the 2 patients with ALK-positive ALC and 4 of the 9 patients with ALK-positive ALCL. The ALK-specific antibodies were detected in 1 of the 2 patients with ALK-positive ALC and 4 of the 9 patients with ALK-negative ALC. Further studies will be necessary to decide whether these antibodies are a diagnostic tool for ALK+ lymphoma.

Conclusion: The presence of ALK-specific antibodies and their therapy response could be correlated with the risk of relapse.
Conclusion: Antibody responses against oncoantigenic ALK-fusion proteins are not restricted to NPM-ALK-positive ALC but can be detected in patients with variant ALK-fusion partners in ALC and DLBCL.

095 MOLECULAR CHARACTERIZATION OF MATURE B-CELL LYMPHOMAS IN CHILDREN: A COOPERATIVE STUDY OF MIMML AND THE NHL-BFM GROUP


1Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts University, Kiel, Germany, 2NHL-BFM Study Center, Department of Pediatric Hematology and Oncology, Justus-Liebig University, Giessen, Germany, 3Department of Pathology, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts University, Kiel, Germany, 4Institute of Cell Biology, Medical School, University of Duisburg-Essen, Essen, Essen, Germany, 5MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom, 6Institute of Functional Genomics, University of Regensburg, Regensburg, Germany, 7Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany

Introduction/Background: Molecular profiling studies in follicular lymphoma (FL) and diffuse large-B-cell lymphoma (DLBCL) have been predominately performed in adult patients. Children with FL and DLBCL have a more favorable outcome but it is not known whether this is due to differences in host characteristics, treatment protocols or tumor biology. Immunoglobulin (IG) translocations are the hallmarks of several B-cell lymphoma types. The present study aimed at characterizing IG translocations in pediatric lymphomas.

Material and methods: In a collaborative study of the MIMML network and the NHL-BFM study group pediatric mature B-cell lymphomas other than Burkitt lymphoma were investigated by FISH, LDI-PCR, immunohistochemistry, sequencing, gene expression profiling and array-CGH.

Results: FISH detected breakpoints in the IGH locus in 29/99 pediatric mature B-cell lymphomas, none carried an IGH-BCL2 fusion. IFR4 and CBFA2T3 were identified in two and one of these lymphomas. FISH screening for chromosomal aberrations affecting these putative oncogenes revealed that these were recurrently involved in translocations, being IGR/BFF and IGH/CBFA2T3 translocations present in 14 and 2 lymphomas. IGR/BFF positivity was associated with a specific germline immunoglobulin IGH/CJ locus. Moreover, the CBFA2T3 gene was one of 123 genes significantly overexpressed in IGR/BFF-positive lymphomas.

Conclusions: Our data indicate that IFR4 and CBFA2T3 are novel recurrent oncogenic targets of IGH translocations. IGR/BFF positivity seems to define a novel subtype of lymphomas significantly associated with young age and a favorable outcome. Further studies have to show whether both, IFR4 and CBFA2T3, interact in the pathogenesis of GC-derived lymphomas, particularly in children.

096 AMPLIFICATION OF CHROMOSOME 13q31 IS ASSOCIATED WITH MIR-17 OVEREXPRESSION AND RELAPSE IN PEDIATRIC BURKITT Lymphoma


1Pediatrics, University of Hawaii, Honolulu, United States, 2Pediatric Oncology, Medical City Children’s Hospital, Dallas, United States, 3Biostatistics, Children’s Oncology Group, Arcadia, United States, 4Pediatrics, Morgan Stanley Children’s Hospital of New York Presbyterian, New York, United States, 5Department of Pathology, Ohio Children’s Hospital, Ohio State University, Columbus, United States, 6Cancer Center for Human Genetics, University of Nebraska Medical Center, Omaha, United States, 7Pathology, University of Utah, Salt Lake City, United States

Background: Chromosomal aberrations and/or clonal immunoglobulin gene rearrangements found in minimal disseminated disease/residual disease (MDD/MRD) may identify children/adolescents with mature B-NHL as high-risk for relapse (Mussolin et al, JCO, 2007; Poiré/Cairo et al, Leukemia, 2009). A previously described method using tumor-specific primers effectively detected MDD/MRD (Shiramizu et al, JCO, 2003) but a more efficient and clinically useful approach is warranted.

Methods: Children and adolescents with B-NHL were treated with FAB Group B4 (Patie/Cairo et al, Blood, 2007) and rituximab (Cairo/Goldman et al, ASCO 2010). Diagnostic and follow-up specimens (blood, marrow, or tumor) were assessed for MDD/MRD. Diagnostic/staging specimen DNA were screened for Vf family members with the following primer pools: Vf1/Vf2; Vf3/Vf4; Vf5/Vf7. For positive-MDD/MRD, individual Vf primers identified specific variable regions on follow-up specimens. If the follow-up specimen was negative, then rescreening with the other Vf family primers was performed to verify a true-negative result.

Results: Diagnostic tumor tissue was available from 12/35 Group B patients from whom each patient had initial staging specimens available; all screened positive and unique Vf family primers identified. Thirty-two of 33 patients were in clinical remission at end of therapy (EOT); had MDD/MRD-negative specimens; and confirmed on repeat screening with all Vf family primers. Two patients relapsed who had MDD/MRD-positive specimens (1 month and 3 months following induction therapy) suggesting lack of clearance of MDD/MRD prior to clinical relapse (4 and 36 months, respectively), p=0.002.

Conclusions: IgVf primer pools were useful tools to assess MDD/MRD in children/adolescents with mature B-NHL specimens. Our findings expand upon B-cell malignancy subtypes that could potentially benefit from MDD/MRD assessment (Mussolin et al, Leukemia 2003). This study supports future investigations with a large cohort to assess the validity and clinical significance of MDD/MRD analysis with IgVf primer pools in childhood and adolescent mature B-NHL. (Supported by NIH CA121955, P20RR016991.)