260 PROGNOSTIC VALUE OF ELEVATED POLYCLONAL SERUM FREE LIGHT CHAINS IN STAGE A CHRONIC LYMPHOCYTIC LEUKAEMIA PATIENTS

G. Pratt1, P. Young2, A. Leviguer2, C. Pepper2, C. Fegan3, D. Oscier2, G. Mead4, S. Harding2

1CRUK Institute for Cancer Studies, University of Birmingham, Birmingham, United Kingdom, 2Binding Site Group, Birmingham, United Kingdom, 3Department of Haematology, Cardiff University, Cardiff, United Kingdom, 4Department of Haematology, Royal Bournemouth Hospital, Bournemouth, United Kingdom

Introduction: Recent reports have suggested that elevated polyclonal serum free light chain (FLC) levels are associated with poor prognosis in patients with non-Hodgkin’s lymphoma and lymphoma transformation in HIV patients. Here we present data evaluating the prognostic value of elevated polyclonal FLC in untreated Binet stage A chronic lymphocytic leukaemia (CLL) patients.

Materials and methods: This was a retrospective study of 167 (103 men and 64 women) stage A CLL patients. FLC measurements were made using commercially available immunoassays (The Binding Site Group, Birmingham, UK) and these results compared to previously measured clinical markers (Zap70, CD38, IGHV mutational status, age, β2-M and abnormal FLC ratio). Time to first treatment (TTFT) was assessed using Kaplan-Meier and Cox regression analysis.

Results: Patient characteristics were as follows: Zap70 positive / negative (Zap70+ / Zap70-ve) (38/112), CD38 positive / negative (CD38+ / CD38-ve) (43/117), mutated / unmutated (123/44), β2-M >3.5mg/L / <3.5mg/L (58/109) and FLC ratio abnormal / normal (53/116). The median value for unmutated FLC measurement was 25mg/L (range 5-374mg/L). Serum levels of FLC were significantly associated with a shorter TTFT (Table 1). An arbitrary cut-off of >70mg/L identified a population of patients with a significantly shorter TTFT compared to patients with FLC <70mg/L (48 months vs 64 months; p=0.002). Zap70+ve, CD38+ve, IGHV mutational status and FLC >70mg/L were associated with shorter TTFT using univariate analysis. Multivariate analysis indicated that Zap70+ve and FLC >70mg/L were independently associated with shorter TTFT. Using Zap 70+ve and FLC >70mg/L, a risk stratification model was constructed. Patients with 0, 1 (Zap70+ve or FLC>70mg/L) or 2 (Zap70+ve and FLC >70mg/L) risk factors had significantly shorter TTFT (median 218, 115, 46 months respectively; p=0.168x10-6). Additionally 16/17 IGHV unmutated patients identified had either 1 or 2 risk factors.

Conclusions: Elevated polyclonal FLC identifies aggressive stage A CLL patients. Table 1 Characteristics for 167 untreated stage A chronic lymphocytic leukemia patients

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Hazard Ratio</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD38+ve</td>
<td>2.05</td>
<td>0.01</td>
</tr>
<tr>
<td>Zap70+ve</td>
<td>2.87</td>
<td>1.61*10^-4</td>
</tr>
<tr>
<td>IGHV mutational status</td>
<td>0.35</td>
<td>0.005</td>
</tr>
<tr>
<td>β2-M >3.5 mg/L</td>
<td>1.11</td>
<td>0.680</td>
</tr>
<tr>
<td>FLC ratio (abnormal)</td>
<td>1.41</td>
<td>0.176</td>
</tr>
<tr>
<td>FLC concentration (mg/L)</td>
<td>1.005</td>
<td>0.046</td>
</tr>
<tr>
<td>FLC >70mg/L</td>
<td>3.10</td>
<td>0.002</td>
</tr>
</tbody>
</table>

261 PRETREATMENT CHARACTERISTICS CORRELATED WITH OUTCOMES IN PATIENTS WITH FLUDARABINE-REFRACTORY CLL TREATED WITH OFATUMUMAB: FINAL RESPONSE ANALYSIS

W. C. Wierda1, I. V. Gupta2, S. Lisby3, A. Oesterborg4

1Department of Leukemia, UT, MD Anderson Cancer Center, Houston, United States, 2Oncology, GlooSmithKline, Collegeville, United States, 3Medical director, LeuMed, Copenhagen, Denmark, 4Hematology, Karolinska University Hospital, Stockholm, Sweden

Background: Prognosis for pts with chronic lymphocytic leukaemia (CLL) refractory to fludarabine and alemtuzumab (FA-ref) or refractory to fludarabine with bulky (>5 cm) lymphadenopathy (BF-ref) is poor with salvage therapies. Ofatumumab (OFA) is a human CD20 monoclonal antibody approved in the US and Europe for treatment of FA-ref CLL. Based on the interim analysis of this international, pivotal trial. Final response results for 206 pts with FA-ref (n=95) or BF-ref (n=111) CLL and subgroup analyses are reported.

Methods: Pts received 8 wkly doses of OFA followed by 4 mthly doses (dose 1, 300 mg; doses 2–12, 2000 mg). Primary endpoint (overall response rate, 1996 NCI-WG criteria) was evaluated over the 24-wk tx period by an Independent Endpoint Review Committee. Secondary endpoints included duration of response, progression-free survival, overall survival and safety.

Results: For the FA-ref and BF-ref groups, respectively: median age, 64 yrs (both groups); median time from diagnosis, 6.5 and 6.2 yrs; median no. of prior txs, 5 and 4; median beta-2 microglobulin, 6.6 and 7.2 mg/mL; and % male, 75 and 73. Overall, 89% and 50% of pts completed 8 and 12 OFA doses, respectively. Outcomes by pretreatment baseline pt characteristics are shown in the Table. 63% of pts had infusion-related reactions that occurred mainly during infusions 1 and 2 and decreased with subsequent infusions; 95% were grade 1–2 and none were fatal. Infection (24%: 8% of these were pneumonia), neutropenia (12%) and anemia (5%) were the most common (25% of all pts) grade ≥3 adverse events. Early death (within 8 wks of tx) occurred in 7 pts in the FA-ref group (infections, n=7) and 4 pts in the BF-ref group (infections, n=2; myocardial infarction, n=1; pulmonary edema, n=1).

Conclusions: These data demonstrate that OFA monotherapy is safe and efficacious in heavily pretreated populations with FA-ref and BF-ref CLL. Responses were seen in pts with high-risk features, including advanced stage and age, presence of 11q deletion, high no. of prior tx and prior exposure to rituximab.

This study is registered at clinicaltrials.gov: NCT00349349. Financial support was provided by GlooSmithKline and Genmab.

Table. Characteristics and response to therapy

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>FA-ref</th>
<th>BF-ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median PFS, mth</td>
<td>11.24</td>
<td>11.44</td>
</tr>
<tr>
<td>Median OS, mth</td>
<td>15.5</td>
<td>17.4</td>
</tr>
</tbody>
</table>

ORR, overall response rate; PFS, progression-free survival; OS, overall survival; PS, performance status; LN, lymph node; FCR, fludarabine, cyclophosphamide and rituximab; FISH, fluorescence in situ hybridization.

282 GENOMIC ABNORMALITIES PRECING THE CLINICAL ONSET OF CHRONIC LYMPHOCYTIC LEUKEMIA

M. Frezzato1, N. Guercini2, M. Bernardi1, A. Montaldi2, I. Giaretta1, M. Belloni2, F. Rodeghiero1, M. Frezzato1, N. Guercini2, M. Bernardi1, A. Montaldi2, I. Giaretta1, M. Belloni2, F. Rodeghiero1

1Hematology Dept., S. Bortolo Hospital, Vicenza, Italy, 2Translational Medicine Dept., S. Bortolo Hospital, Vicenza, Italy

© The Author 2011. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com
Background: The pathogenesis of Chronic Lymphocytic Leukaemia (CLL) is not fully clarified. A neoplastic population identified by a monoclonal IGH gene rearrangement may last longer than 7 years even before the occurrence of an M-scores in 2005, Landgren 2006. Events leading to progression and the time of onset of cytogenetic abnormalities are undefined. To this aim we searched for genetic abnormalities preceding diagnosis with Multiplex Ligation-dependent Probe Amplification (MLPA) (Al Zabbi, 2010) on preserved DNA of subjects who subsequently developed CLL.

Materials And Methods: Six CLL cases (Cheson, 1996) were identified in a cohort of 14396 healthy subjects enrolled from 1993 to 1996 in an ongoing prospective clinical survey also providing DNA samples preservation. In 5 of them the IGH gene rearrangement found at diagnosis was already present at enrolment, 39 to 89 months earlier (Frezzato, 2010). We studied these patients by FISH at diagnosis and, in a chromosomal abnormality was detected, by MLPA both at diagnosis and at enrolment. Interphase FISH with SEER3 (6q23), C-MYC (8q24), ATM (11q22), GLI (1q13), DLEU1 (1q34 and p53 (17p13) probes was performed according to the ISCN criteria (Brotman, 2009). DNA was analysed with MLPA P900 test kit (MRC Holland), including set probes for 11q23 (ATM), 12p13.2-12p13, 13q14-12q43, 13q14 (KCN-GR-A-1), 17p13.1 (p53) chromosomal regions, according to the manufacturer’s protocol.

Results: A del(13q)14 was found at diagnosis in 3 and 2 patients by FISH and MLPA respectively. MLPA revealed the same deletion to be present by 54 months earlier in one subject (see Table for details).

<table>
<thead>
<tr>
<th>Sex</th>
<th>Age</th>
<th>Fish at diagnosis</th>
<th>Interphases</th>
<th>MLPA at diagnosis</th>
<th>MLPA at enrolment</th>
<th>Enrolment to CLL diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>F 65</td>
<td>del 13q14 90%</td>
<td>del13q14 (KCN-GR-A1)</td>
<td>RENC 0.63</td>
<td>del13q14 (KCN-GR-A1)</td>
<td>RENC 0.73</td>
<td>Neg</td>
</tr>
<tr>
<td>M 56</td>
<td>del 13q14 10%</td>
<td>Neg</td>
<td>del13q14 (KCN-GR-A1)</td>
<td>RENC 0.55</td>
<td>del13q14 (KCN-GR-A1)</td>
<td>RENC 0.55</td>
</tr>
</tbody>
</table>

RCN: relative copy number

Conclusions: We detected a CLL-associated genetic deletion a long time before diagnosis. It includes the DLEU1 locus, proposed as a tumor-associated suppressor gene (Oussillette, 2008), and was present at the same time of the IGH gene rearrangement. We have been able to evaluate only few cases but our results could prompt investigations on the role of genetic abnormalities in the pathogenesis of CLL.

263 PROGRESSIVE TELOMERE SHORTENING DURING THE NATURAL HISTORY OF CHRONIC LYMPHOCYTIC LEUKEMIA

1Divisione di Ematologia, Universita` di Torino, Torino, Italy, 2Divisione di Ematologia, Universita` del Piemonte Orientale, Novara, Italy, 3Divisione di Ematologia, Universita` di Torino, IOS, Bellinzona (CH), Torino, Italy, 4Divisione di Ematologia, CHU Aviano, Aviano, Italy.

Background: Telomere length (TL) at diagnosis has been established as an independent outcome predictor in CLL. However data on TL dynamics over time are scant and anecdotal. This issue has been here addressed on a series of 86 CLL patients (pts) with a median follow-up of 83 months (m) (range: 35-284).

Methods: TL was analyzed as previously described (Rossi, Leukemia 2009; Ladetto, Ematologia, CRO Aviano, Aviano, Italy) using the Mann-Whitney or Wilcoxon T-test as required and survival analysis using the RCN: 0,55 DLEU2)

Results: A median number of pretherapies was 3 (1-8), the median number of BMR/BR-maintenance (Rm) following FCR as front-line therapy. Patients and Methods: Between October 07-December 10, a cohort of 84 untreated pts with CD20+ CLL received 6 cycles of FCR (R375mg/m2 iv cycle 1 and 500mg/m2 iv, cycles 2-6; F25mg/m2 iv and C250mg/m2 iv days 1-3; every 28 days). Pts achieving a response were treated with Rm: Rm therapy consisted in maintenance (Rm) following FCR is feasible and effective in untreated CLL pts and increases the number of MRD-negative CR in responding cases and with an acceptable safety profile.

264 RITUXIMAB MAINTENANCE AFTER COMBINED FCR IN PREVIOUSLY UNTREATED PATIENTS WITH ACTIVE B-CELL CLL: INTERIM ANALYSIS OF AN ONGOING PHASE II MULTICENTER TRIAL ON BEHALF OF THE SPANISH CLL STUDY GROUP (GELLC)

J. Garcia-Marco, J. Lopez, E. Gonzalez, P. Giraldo, E. Conde, J. De La Serna, M. Gonzalez, F. Carbonell, J. Garcia-Vela

1Hematology, Hu Puerta de Hierro, Madrid, Spain, 2Hem, Hu FyC, Madrid, Spain, 3Hem, ICO, Barcelona, Spain, 4Hem, HU M. Sever, Zaragoza, Spain, 5Hem, HU M. Valdecilla, Santander, Spain, 6Hem, HU 12 Octubre, Madrid, Spain, 7Hem, HCU, Salamanca, Spain, 8Hem, HGU, Valencia, Spain, 9Hem, HU Getafe, Madrid, Spain

Introduction: Combined FCR is claimed to be the standard first-line treatment in CLL. However, more than 30% of patients’ relapseworkflow CRF or FCR therapy. We report on the efficacy and safety results of an interim analysis after 18 mths of R maintenance (Rm) following FCR as front-line therapy.

Conclusion: Combined FCR is claimed to be the standard first-line treatment in CLL. However, more than 30% of patients’ relapse to MRD-positive (n) and positive (p) CR, MRD-n and p PR rates were 40.5%, 38.8% and 17.7% respectively. The most common AE after FCR were R infusion (65.1%), myelotoxicity (33.7%), infections (34%) and non hematological SAEs (14.2%). MRD was given to 75(89.2%)/84 pts, 9 were withdrawn by progression (1), toxicity (5) and investigator decision (3). As of January 2011, 57(67%)/79 pts had completed 1 year of Rm and were evaluable for response, 18(24%) pts were withdrawn by progression (4), toxicity (10), consent withdrawal (2), others (2). Out of 57 pts, 24 (42.1%) remained in MRD-n CR and 1 pts converted to MRD-p CR; 24 (42.1%) pts were in MRD-p CR and 10 converted to MRD-n CR, while 14 remained in MRD-p CR and 2/9 (15.8%) pts in MRD-p PR converted to MRD-n CR. In addition, 35 pts completed 18 mths of Rm: 5 pts converted to MRD-n CR, while 14 remained in MRD-p CR and 2/9 (15.8%) pts in MRD-n CR and increases the number of MRD-negative CR in responding cases and with an acceptable safety profile.

265 RETHERAPY WITH BENDAMUSTINE/MITOXANTRONE/ RITUXIMAB (BMR) IN PATIENTS WITH RELAPSED/REFRACTORY CLL AND INDOLENT LYMPHOMAS ACHIEVES HIGH RESPONSE RATES AND SOME LONG LASTING REMISSIONS

F. Weide, S. Feiten, V. Friessenhan, J. Heymanns, K. Klebodo, H. Köppler, J. Thomalla, C. Van Royen

1Praxisklinik für Hämatologie und Onkologie, Koblenz, Germany, 2Institut für Versorgungsforschung in der Onkologie, Koblenz, Germany

Background: CLL was developed in 1999 and has shown high response rates and long lasting remissions in relapsed/refractory indolent B-cell malignancies. Here we have evaluated the efficacy of BMR-therapies in this patient population.

Patients and Methods: All patients with CLL or indolent B-cell-malignancies (NHL) who previously had been treated with BMR and were retreated with BMR between 2000-2010 were analysed retrospectively. Data were collected from patient files into a database and analysed statistically using SPSS.

Results: All 84 pts assigned to FCR were evaluable for response. On an intent to treat analysis, OR, CR, PR, NR and progression rates were 95.2%, 73.8%, 21.4%, 3.6% and 1.2% respectively. Of 79 pts evaluable for bone marrow MRD status, MRD-negative (n) and positive (p) CR, MRD-n and p PR rates were 40.5%, 38.8% and 17.7% respectively. The most common AE after FCR were R infusion (65.1%), myelotoxicity (33.7%), infections (34%) and non hematological SAEs (14.2%). MRD was given to 75(89.2%)/84 pts, 9 were withdrawn by progression (1), toxicity (5) and investigator decision (3). As of January 2011, 57(67%)/79 pts had completed 1 year of Rm and were evaluable for response, 18(24%) pts were withdrawn by progression (4), toxicity (10), consent withdrawal (2), others (2). Out of 57 pts, 24 (42.1%) remained in MRD-n CR and 1 pts converted to MRD-p CR; 24 (42.1%) pts were in MRD-p CR and 10 converted to MRD-n CR, while 14 remained in MRD-p CR and 2/9 (15.8%) pts in MRD-p PR converted to MRD-n CR. In addition, 35 pts completed 18 mths of Rm: 5 pts converted to MRD-n CR, while 14 remained in MRD-p CR and 2/9 (15.8%) pts in MRD-n CR and increases the number of MRD-negative CR in responding cases and with an acceptable safety profile.

Conclusion: The addition of Rm following FCR is feasible and effective in untreated CLL pts and increases the number of MRD-negative CR in responding cases and with an acceptable safety profile.
months in CLL (5-70) and 22 / 13 months in NHL (1-97). The mean / median time to next chemoimmunotherapy after the first BMR-retherapy (second BMR-therapy) was 14 / 7 months in CLL (0-49) and 8 / 6 months in NHL (0-29). 4 of the 16 patients suffering from CLL (25%) and 2 of the 16 patients suffering from NHL (13%) did not receive further chemoimmunotherapy after the first BMR-retherapy (second BMR-therapy) until the end of the analysis. Main toxicity in all BMR-therapies was a reversible grade 3+4 hematotoxicity in 38% of patients with CLL and 50% of patients with NHL. Therapy associated hospitalisation was seen in 3/32 patients. No therapy-associated death occurred.

Conclusion: BMR-retherapy achieves high response rates in patients with relapsed/refractory CLL and NHL. Hemotoxicity is moderate and therapy associated hospitalisation is low.

266 BENDAMUSTINE AND ALEMTUZUMAB (BEN CAM) COMBINATION IN RELAPSED AND REFRACTORY CHRONIC LYMPHOCYTIC LEUKAEMIA (CLL): PRELIMINARY REPORT OF THE ITALIAN TRIAL

A. Tedeschi1, M. Coscia2, D. Rossi3, F. Ricci4, G. D’Arcenas5, E. Orlandi6, V. Belèsto Petrizzi1, L. Scarfo7, C. Vitale8, E. Vismara1, G. Gaidano3, E. Morra1, M. Massaia2, M. Montillo1

1Dpt of Hematology, Niguarda Hospital, Milano, Italy, 2Dpt Hematology, University Torino, Torino, Italy, 3Dpt Hematology, University Novara, Novara, Italy, 4Dpt of Hematology, IRCSS, San Giovanni Rotondo, Italy, 5Dpt Hematology, University Pavia, Pavia, Italy, 6Dpt Internal Medicine, Nocera Inferiore Hospital, Nocera Inferiore, Italy, 7Dpt Hematology, University HSR, Milano, Italy

Introduction: Bendamustine (Ben) and alentuzumab (Cam) are effective in CLL exhibiting an unique mechanism of action. A synergistic or additive effect might be expected when used in combination. We designed a multicentric, single arm, dose escalation study to determine maximum tolerated dose (MTD) and efficacy of Ben 70 mg/m² if MTD was not reached. Treatment was repeated every 28 d up to 4 cycles. In Phase I (12 pts) resulted Ben 70 mg/m² d 1,2 and Cam 30 mg sc d 1-3 as the 2nd cohort received an increased dose of Cam 30 mg with a subsequent further increase of Ben 70 mg/m² if MTD was not reached. Treatment was repeated every 28 d up to 4 cycles. In Phase I (12 pts) resulted Ben 70 mg/m² d 1,2 and Cam 30 mg sc d 1-3 as the MTD.

Results: Overall 26 pts, median age 67 (54-82), 42% Binet C, refractory 23%, have been enrolled. Median prior regimens were 2 (1–6), 73% received previously fludarabine based regimens and 46% monoclonal antibodies. Biological characteristics are shown below

<table>
<thead>
<tr>
<th>IgVH</th>
<th>ZAP70</th>
<th>CD38</th>
<th>FISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>mut</td>
<td>unm</td>
<td>pos</td>
<td>neg</td>
</tr>
<tr>
<td>23</td>
<td>62</td>
<td>62</td>
<td>50</td>
</tr>
</tbody>
</table>

*Data not available in all pts

The 26 pts received overall 94 courses, median 4 (2-4). Response is available in 20 pts, pending in 6. Response rate was 60%, 30% CRs and 30% PRs. Disease progression during treatment was observed in 20% of cases. Grade III-IV hematotoxicity was mild. No major treatment toxicities were myelosuppression and manageable infections. No toxic deaths were recorded while on treatment.

267 T-CELL PROLYMPHOCYTIC LEUKAEMIA (T-PLL): A RE-EXAMINATION OF IMMUNOPHENOTYPE AND MORPHOLOGY

L. B. Smith1, B. Schnitzer2

1Pathology, University of Michigan, Ann Arbor, United States

Introduction/Background: T-cell prolymphocytic leukemia (T-PLL) is a rare T-cell lymphoproliferative disorder with an aggressive clinical course. The morphology and immunophenotype of T-PLL have not been described, including the classic prolymphocytic morphology and the predominance of CD4-positive cases; however, few case series exist. In the current study, it was hypothesized that CD8 expression and morphologic variation are more common than previously recognized.

Materials and Methods: Cases in which T-PLL was a diagnostic consideration between 1990 and 2010 were collected from the slide archive at the University of Michigan. Twenty-four cases were considered for inclusion. Laboratory values, immunophenotype, and morphology were examined.

Results: The diagnosis of T-PLL was supported in 20 cases. The excluded cases had clinical features or laboratory values more suggestive of another mature T-cell lymphoproliferative disease. Cases of T-PLL ranged in age from 42-90 years (median 61.9) with a male predominance (70%). The white blood cell counts at presentation ranged from 9.7 K/l to 476 K/l (median 61 K/l, mean 128 K/l). CD4 was expressed in 10 cases (50%) and CD8 was expressed in 9 cases (45%). CD4 and CD8 were coexpressed in 1 case (5%). CD4 and CD8 showed no statistical difference in expression (p=0.82, Chi-Square). In 7 of 9 CD8-positive cases, characteristic cytogenetic findings including inversion 14, a translocation involving chromosome 14, and/or abnormalities of chromosome 8, were documented. Material was available for histopathologic review in 17 cases. Morphologic features were variable and the cases were divided into three types: prolymphocytic (41%), small cell (35%), and pleomorphic (24%). The pleomorphic cases had a subset of medium to large cells with markedly irregular nuclear contours and morphological resemblance to cases of adult T-cell leukemia/lymphoma (ATLL). All of the pleomorphic cases expressed CD8, and 3 of 4 cases had serologic studies for HTLV-1 performed to exclude ATLL. The prolymphocytic and small cell cases showed no differences in CD4 and CD8 expression. All three morphologic subtypes showed some degree of nuclear contour irregularity. Other morphologic features included cytoplasmic vacuoles, granules, and blebs.

Conclusion: The findings from this series indicate that CD4 and CD8 expression are seen with approximately equal frequency in T-PLL. While many cases have prolymphocytic morphology, small cell variant is not unusual and pleomorphic cases can occur. CD8 expression and/or morphologic variability should not be used to exclude T-PLL. Diagnosis requires integration of clinical, laboratory, and cytogenetic data.

268 REARRANGEMENTS OF 14Q32.13 TARGETING TCL1A ARE RECURRENT IN HAIRY-CELL LYMPHOPROLIFERATIVE DISORDERS

I. Wodarska1, H. Urbankova1, M. Baens1, L. Michaux1, K. Rack1, B. Kahrinckova1, J. Finafa Ferreiro1, P. Van Loo1, W. De Kever1, D. Dierick2, H. Demuyck3, A. Delannoy5, J. Verschuere6, M. Jarosova7, T. Tousseryn, P. Vanderberghe1

1Center for Human Genetics, Catholic University of Leuven, Leuven, Belgium, 2Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Gosselies, Belgium, 3Department of Hematology, University Hospitals Leuven, Leuven, Belgium, 4Department of Hematology, H. Hartiezheusie, Roeselaare, Belgium, 5Department of Hematology, Hôpital de Jointont, Haine-St-Paul, Belgium, 6Department of Hematology, AZ Glorius, Ronsse, Belgium, 7Department of Hemato-Oncology, Palacky University, Olomouc, Czech Republic, 8Department of Pathology, University Hospitals Leuven, Leuven, Belgium

Introduction: Hairy-cell lymphoproliferative disorders (HCLD) are rare and include 3 indolent B-cell malignancies sharing several pathological features: hairy cell leukemia (HCL), HCL-variant and splenic marginal zone lymphoma. HCLD are generally characterized at the genetic level, and so far no characteristic chromosomal aberration has been reported in these tumors.

Material and Methods: Discrete or cryptic 14q32 aberrations detected by cytogenetics/FISH in 5 cases of HCLD were further characterized using FISH and CGH-array. Expression analysis of candidate targeted genes was performed by qRT-PCR.

Results: Using FISH approach, we identified a novel breakpoint region at 14q32.13 co-rearranged with IGH at 14q32.33 in 5 cases of HCLD were further characterized using FISH and CGH-array. Expression analysis of candidate targeted genes was performed by qRT-PCR.

Conclusions: Using FISH approach, we identified a novel breakpoint region at 14q32.13 co-rearranged with IGH at 14q32.33 in 5 cases of HCLD were further characterized using FISH and CGH-array. Expression analysis of candidate targeted genes was performed by qRT-PCR.

Results: Using FISH approach, we identified a novel breakpoint region at 14q32.13 co-rearranged with IGH at 14q32.33 in 5 cases of HCLD were further characterized using FISH and CGH-array. Expression analysis of candidate targeted genes was performed by qRT-PCR.
Introduction: Single-agent cladribine (2CdA) is highly effective in the majority of Hairy cell leukemia (HCL) patients. However, refractory and relapsing patients still exist and parameters predicting efficacy of 2CdA in HCL are scarcely known. Material and methods: In the IGHCL2004 Italian multicentre clinical trial, parameters able to predict efficacy of subcutaneous 2CdA were prospectively investigated in classic HCL requiring first treatment. Clinical data and samples were collected centrally for diagnostic revision and for molecular analyses prior to treatment. Tumor IGH and TP53 analyses or Genome-wide DNA profiling was performed in the cases with >10% or >50% hairy cells (HC) in the test sample, respectively (Forconi, Blood 2009). Patients entering the study received 0.5-0.7 mg/kg sc2CdA as a single course. Efficacy endpoints were response to sc2CdA, treatment free interval (TFI), relapse free survival (RFS), and overall survival (OS). Complete (CR) and Partial Remissions (PR) were rated as beneficial responses (CR/PR), while minor (mR) and No Responses (NR) were rated as failures (mR/NR).

Results: 140/148 patients (94.6%) had a CR/PR and 8/148 (5.4%) a mR/NR. Risk factors of sc2CdA failure were splenomegaly (p=.001), HC counts>5x10^9/L (p<.001), and B2M>2X (p=.013). UM-IGH and TP53 were confirmed as risk factors for mR/NR (p<.001 and p=.011). After a median follow-up of 42 months, 5 year TFI, RFS and OS were 69%, 73% and 95%, respectively. Diagnostic risk factors of short TFI were splenomegaly (p=.007), HC>5x10^9/L (p<.001), UM-IGH (p<.001), and TP53 disfunction (p=.002). UM-IGH (HR=8.1, CI 1.7-38.1), high HC (HR=6.9, CI 1.5-31.6) and splenomegaly (HR=3.7, CI 1.1-12.8) scored as independent risk factors. Quality of response also predicted risk of short TFI (NR=mR>PR>CR, p<.001). Univariate analysis of clinical parameters identified HC>5x10^9 (p=.016) and PR (p=.001) as risk factors of short RFS. PR was the sole independent risk factor of relapse after a median of 46 months follow-up (HR=4.5, 95%CI 1.7-12.3).

Conclusions: Tumor UM-IGH status, splenomegaly, high HC count are independent risk factors of treatment failure and progression. RFS analysis identify PR as the sole independent factor of relapse risk in responsive patients. This analysis may have important implications for the selection of HCL patients that will require treatments alternative to single-agent 2CdA.